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Abstract. We propose a simple but effective re-ranking method for im-
proving the results of object retrieval. Our method considers the contex-
tual information embedded in a dataset. This is based on the observation
that if there are multiple images containing the same object in a dataset,
then these images can often be grouped into clusters. We make the fol-
lowing two contributions. Firstly, we gain this contextual information by
a random dimension partition of the dataset. This enables online query
model expansion if needed. Secondly, we use the collected contextual in-
formation to refine the initial retrieval results by taking into account the
context in which each retrieved image occurs. Experimental results on
several datasets demonstrate the effectiveness of our method in both ac-
curacy and computation cost: our method refines retrieval results without
relying on low-level feature matching or re-issuing the query.

1 Introduction

The goal of object retrieval is to find other images in a dataset containing a tar-
get object given in a query image. The target object may appear under varying
image conditions, including scale, viewpoint, lighting changes, or partial occlu-
sion of the objects [1]. Therefore, many successful object retrieval systems are
based on local invariant descriptors [2, 3, 1, 4, 5], that are robust to scale, affine
transformations and partial occlusion [6].

In order to scale to large datasets, an image is reduced into a compressed
‘Bag-of-Words” (BoW) format [2] instead of using thousands of local invariant
descriptors. In the BoW model, each “word” is a quantised image feature, typi-
cally weighted according to its frequency in the image (term frequency, tf) and
rarity in the dataset (inverse document frequency, idf). However, the compressed
format decreases the retrieval accuracy because of the quantisation process [7].

Over the past decade, there has been considerable improvement on the BoW
based retrieval system, focusing on better exploiting low-level feature informa-
tion [1, 8, 7, 9–12]. It has also been noticed [13, 10, 11] that an image dataset
usually contains multiple images showing the same object. Nevertheless, little
attention has been paid to the fact that these images containing the same object
will appear as clusters in the dataset as opposed to background noise (see Fig. 1
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Fig. 1. Illustration of context based re-ranking. The initial retrieval results (sorted by
similarity Ψ) contain both true and false positives. The numbers above images are
rankings. The accuracy is increased after re-ranking by contextual information. Best
viewed in color.

for example). These clustered images can be treated as contextually associated.
To this end, we define a “context” as a group of images having common visual
properties and show its benefits in improving the retrieval performance.

Unlike many previous methods that require an expensive offline training
stage, the first contribution of this paper is a simple, efficient clustering method
for online context generation. Traditional methods, e.g. k-means, are unable to
cluster the BoW vectors efficiently, because the vectors are very sparse and high
dimensional. Instead, we propose a random space partition method, by which the
dataset is clustered into groups of images by partitions along randomly selected
dimensions. This is effective because of the sparsity of the BoW vectors, and
efficient despite their high dimensionality because only a small number of di-
mensions are selected. The scheme of this simplified clustering method is similar
to [14], in which a random projection of high dimensional data is conducted for
multiple runs as well.

Our second contribution is to improve the initial retrieval results once the
contexts are available, by the analysis of image ranks in each context. The idea
is that the similarity between a query and a dataset image should not be deter-
mined solely by those two images (as in the standard dot-product similarity [2]),
but also influenced by their association with other contextually related images.
As illustrated in Fig. 1, images in a context are promoted if they support each
other, i.e. high retrieval ranks dominate, and therefore ranked highly (context
A). Otherwise, images are demoted if there are low or conflicting ranks in their
context (context B). Our context based re-ranking method refines the retrieval
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results by improving the standard one-to-one comparison (dot-product similar-
ity) with the contextual information at query time.

The rest of the paper is organised as follows: Section 2 discusses the related
work to our method. Section 3 presents the method to extract the contextual
information, which is used in Section 4 to re-rank the dataset. Section 5 reports
the re-ranking results on some public datasets and compares them to state-of-
the-art. Finally we draw a conclusion in Section 6.

2 Related work

There have been extensive studies aiming to increase the accuracy of BoW based
retrieval system. One approach is to improve the BoW image descriptors, for ex-
ample forming a discriminative visual vocabulary [8], mapping multiple visual
words to a single feature [7, 9], or deriving a query adaptive similarity based on
feature-to-feature similarity [12]. Another approach is to re-rank the retrieval
results as a post-process by analysing an initial set of query results [1, 4, 15,
16]. Compared to the first approach, online re-ranking does not require re-
construction of the visual vocabulary, nor does it require training data. In this
paper, we adopt the second approach: improving the retrieval performance by an
online re-ranking process.

A popular approach to online re-ranking is to utilise low-level spatial infor-
mation to promote dataset images whose features are spatially consistent with
those in the query. Spatial verification [1] examines a truncated list of retrieved
results by computing a geometric transformation between features in both query
and dataset images. However, the computation of geometric transformation is
expensive, so that only a short-list of images can be examined. To speed it up,
weak geometric consistency (WGC) [4] filters mismatching descriptors without
applying geometric transformation. Instead, the method assumes that matching
descriptors are related by a fixed orientation and scale. Re-ranking can also be
achieved by testing reciprocal similarity of query and dataset images [13]—that
is, whether the images retrieve each other when both used as queries. Reciprocal
similarity is discovered by a k-reciprocal nearest neighbour structure that is built
offline. In addition, features from verified top ranked results can be added to the
query which is then re-issued, in order to improve recall [15, 16]. These methods
succeed in finding more query relevant images, but at the cost of online feature
matching or query re-issuing, which is computationally expensive.

Rather than examining individual features, the ranking information embed-
ded in a set of top ranked results can be used to further refine the results [17, 18].
In [17], a distance matrix is defined by the similarity of the ranks to take into
account the contextual information, while the method proposed in [18] measures
the similarity between the query and dataset images based on the idea that im-
ages are visually similar if they have intersections among top ranked results when
using them as queries. However, these methods need to re-query the dataset in
order to re-define the distance between query and dataset images.
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In this paper, we present a novel re-ranking method for BoW based object
retrieval, which achieves both efficiency and effectiveness. Our work is also in-
spired by [10] in terms of adjusting the similarity scores of images. Their method
applies an offline image graph creation step in which each node represents an
image and an edge indicates the connection of same objects in a pair of images,
such that neighbouring images are grouped. Our work is different from [10] in
two aspects: i) our method softly adjusts the similarity scores of dataset images
at runtime with the help of the contextual information (although the offline step
is optional); ii) the adjustments of similarity scores are based on query-specific
rank analysis performed at runtime.

3 Context generation

A key ingredient of our method is to generate “contexts” from the dataset.
This section describes how to derive such information efficiently from the BoW
vectors. The usage of contextual information for re-ranking is discussed in the
following Section.

3.1 Random space partition

Let T be a set of dataset images. The goal of our method is to cluster T into
D groups: C := {ck}Dk=1, where each group ck is a context that contains a
small number (nk) of dataset images. The clustering of T involves two issues:
i) scalability: the clustering is conducted on high-dimensional BoW vectors, for
which standard k-means methods or graph cut of the image dataset [19] are not
feasible; and ii) efficiency: as it runs at query time, the partition should have
low computation and memory requirements.

In order to address these two issues, we use a random space partition method
which utilises the specific properties of the BoW model. A visual vocabulary is
composed of N visual words: W := {wi}Ni=1, where N is typically large (N = 106

in our implementation). The dataset images are represented as a collection of
visual word vectors T := {dj}Vj=1, in which V is number of images and dj is the
corresponding tf-idf image vector.

The dataset vectors T are very sparse: on average, there are only 2200 non-
zero entries in a 106 dimensional vector (in our implementation). The high spar-
sity simplifies the partitioning of T . As illustrated in Fig. 2 (a), the dataset
vectors T are separated into two groups by a random dimension of the image
vectors, according to whether each vector contains a non-zero entry in a specific
dimension. Note that each dimension of dj corresponds to one visual word wi,
so the images can be quickly accessed by an inverted file [2], which maps each
visual word to images it appears in. Thus, each “column” of the file, as is shown
in Fig. 2 (b), corresponds to a visual word wi and forms an image group ck:

ck = {dj}nk
j=1 if Fj(wi) > 0 (1)
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Fig. 2. (a): Image vector separation by a random dimension into two parts. (b): Illus-
tration of random space partition method by using the inverted file. Best viewed in
color.

where Fj(wi) is the frequency of wi in image j. Scalable clustering of T is
achieved by repeated random partitions. As the inverted file is already used for
the calculation of tf-idf weights, this involves almost no extra computation or
storage beyond the standard BoW pipeline.

The efficiency of our method is achieved by performing only D (D � N) data
partitions to generate groups C. Intuitively, it is inefficient to use all dimensions
(visual words) because only a small number of them are informative. These
words are usually the query words Q, thus the random dimension partition is
conducted on Q by default. In addition, an extra set of words S (Q,S ⊂ W),
which are relevant to the query, can also be considered.

Query-relevant words S can be generated either offline or online as follows:
i) offline: obtain S by a thesaurus structure built offline [20], which includes the
frequently co-occurring visual words in fixed spatial regions. ii) online: obtain
S by query expansion [15], in which the visual words included in the spatially
verified regions are appended.

3.2 Expansion of contexts

In order to promote the query-relevant words S (as well as keep the query words
Q), we propose an expansion method during context generation which adopts a
weighted random selection scheme to select the dimensions. Because each dimen-
sion in the BoW vector is also associated to a visual word, this method can be
seen as an expansion of the original query words Q obtained without re-issuing
the query. The expansion proceeds as follows.

Firstly, we randomly choose a subset of words in which Q and S are given
a higher probability of selection than those words that are non relevant. This is
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done by associating visual words to random keys under a mapping function f :

f(wi) =

a · x if wi ∈ Q
b · x if wi ∈ S\(Q ∩ S)
x otherwise

(2)

where wi ∈ W, x is a uniformly distributed random variable x ∈ U(0, 1) and
the parameters a, b are the weights. The D dimensions used for partition are
selected in decreasing order of f(wi). This scheme of random dimension selection
is similar to [21].

Secondly, we define three cases based on the values of a and b, such that the
query information can be incrementally appended by adjusting the parameters:
i) Random selection: a = 1, b = 1: each visual word has uniform probability
of being selected. ii) Query-dependent selection: a > 1, b = 1: words in the
given query Q are more likely to be selected. iii) Query-expansion selection:
a > 1, b > 1: words in the query and the query-relevant set S are more likely to be
selected than others. After obtaining D dimensions, image groups C := {ck}Dk=1

are used to estimate the context scores for re-ranking.

4 Context based re-ranking

This section describes our context based re-ranking scheme. We start with the
baseline method that sorts the dataset images according to their dot-product
similarity [2] between the tf-idf vectors q and d, corresponding to query image
q and a dataset image d:

Ψ(q, d) =
q · d

‖ q ‖‖ d ‖
(3)

Each dataset image d then obtains a rank order rd under Ψ(q, d), for which top
ranks are probably relevant to query while low ranks are likely irrelevant to
the query. The ranking is efficient, but neglects contextual information linking
the returned results as it only measures similarity between the query and each
dataset image in isolation.

As illustrated in Fig. 1, the ranks of all dataset images in a given context can
be informative. If many images in a context are relevant to a query, then this
supports ranking all images in that context more highly. Conversely, if many
images in a context have low rank, then a high ranked exception is likely to be
a false positive. Therefore, our method aims to improve one-to-one matching by
embedding this information in the similarity measure Ψ (Eq. 3), such that con-
textually similar images boost each other up. To this end, we use the contextual
ranking information to adjust the dot-product similarity Ψ :

Φ(q, d) = Ψ(q, d) · exp(Θ(q, d)) (4)

where Φ(q, d) is the improved ranking score. The context factor Θ(q, d) in Eq. (4)
is calculated according to the ranks of result images belonging to each context,
and is discussed below. Images are re-ranked by sorting Φ(q, d) (Eq. (4)). Our
method is outlined in Algorithm 1.
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Algorithm 1 Context based re-ranking

Input: Query image q, number of random dimensions D.
Output: Retrieval results.
1. Rank dataset images by sorting the dot-product similarity Ψ (Eq. 3).
2. Obtain initial ranks of dataset images.
3. Select D dimensions (Eq. (2)).
4. Generate image groups C := {ck}Dk=1 from inverted file (Eq. (1)).
5. Compute the context score W (q, ck) for each image group (Eq. (5)).
6. Compute the context factor Θ(q, d) for each dataset image d (Eq. (6)).
7. Adjust image similarity and re-rank (Eq. (4)).
Return: Re-ranked results.

4.1 Computing the context factor for re-ranking

Our context based re-ranking method introduces the contextual information to
the similarity measure by a pair of contextual measures: a context factor and a
context score. A query-specific context score W (q, ck) describes the association
of each image group ck, while the context factor Θ(q, d) of a dataset image d
is formed by context scores learnt from nd image groups it has been assigned
to. The dataset image d is then re-ranked by the similarity score refined by the
context factor (Eq. (4)). Specifically, our method proceeds in two steps.

Firstly, each image group is assigned a context score W (q, ck), which sum-
marises the ranks of images in the group. This is composed of two parts:

– The coherence of image ranks in ck: 1
n2
k

nk∑
j=1

nk∑
s=1

K(
rj−rs
ρ ), where rj and rs are

the image ranks in ck, nk is the group size, K is a Gaussian kernel and ρ
is its bandwidth. In this way, the coherence of a context is measured by the
association of image ranks in ck. The parameter ρ is automatically tuned,
based on estimating the standard deviation of the input image ranks [22].
Thus, image groups which are distributed widely in the ranking list have less
coherence, and will not be weighted strongly in the refined similarity.

– The number of top and bottom image ranks:
tq(ck,H)−bq(ck,H)

nk
, where func-

tions tq(ck, H) and bq(ck, H) count the number of members ck in the top-H
and bottom-H places, respectively. This indicates whether the contexts are
close to query q or not. The context score of group ck is the product of both:

W (q, ck) =

 1

n2k

nk∑
j=1

nk∑
s=1

K(
rj − rs
ρ

)

 · tq(ck, H)− bq(ck, H)

nk
(5)

Secondly, the re-ranking process utilises these context scores to improve the
similarity score of a dataset image d. We index each dataset image d by a set
of D indicators {Idk}Dk=1, where Idk indicates whether d appears in ck or not. As
each image is assigned to several groups, the re-ranking then makes use of the
average context score. The context factor is obtained from these context scores,
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and is defined for a response image d to query image q as:

Θ(q, d) =
1
D∑
k=1

Idk

·
D∑
k=1

IdkW (q, ck) (6)

According to Eq. (4), the initial similarity of images having negative context
factor (Θ(q, d) < 0) is decreased, while those having positive context factor
(Θ(q, d) > 0) is increased.

5 Experimental results

5.1 Experimental setup

We investigate the performance of our context based re-ranking method in the
following aspects: i) varying the key parameters applied to context generation
(random space partition and context expansion). ii) varying the context re-
ranking parameters, which include the number of iterations as well as the top
(bottom) truncation. iii) comparison to state-of-the-art. The details of our ex-
perimental settings are as follows.

Datasets: The retrieval experiments are conducted on three public object
retrieval datasets: two small scale datasets (Oxford 5K and Paris 6K [23]) and a
large scale dataset Oxford 105K consisting of Oxford 5K images and 100K images
from MIRFLICKR-1M [24]. Both the Oxford 5K and Paris 6K datasets [23]
contain 11 building landmarks for evaluation. Each image within these datasets
is represented as a histogram of SIFT words after tf-idf weighting.

Implementation details: The visual words are obtained by quantising the
SIFT feature descriptors using approximate k-means [1, 25]. The vocabulary size
is 1 million. After that, images are stored in an inverted file structure such that
the online process only needs to access those containing query words (or query
related words as discussed in Section 3.2). We run our experiments on 2×8-Core
Xeon E5-2680 at 2.70GHz with 10G memory.

Evaluation: In order to quantify the retrieval performance, we evaluate the
retrieval accuracy by the widely used mean average precision (mAP), as defined
in [2]. The mAP scores reported in the following are from our implementation,
excepts those cited from other sources.

5.2 Evaluation of random space partition

Initially, we evaluate the effects of various parameter settings in the random
space partition. As discussed in Section 3.1, the random space partition involves
two key parameters:

1) Query-dependent set Q selection weight, achieved by adjusting the
weight a in the random mapping function (Eq. 2). We illustrate the effects of
query-dependent set Q by varying a while fixing the other weighting parameter
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Methods Oxford 5K Paris 6K

Baseline (without re-ranking) 0.612 0.639

Spatial Re-ranking 0.645 0.653

a = 1, b = 1 f1 0.644 0.674

a > 1, b = 1
f2 0.670 0.690
f3 0.674 0.690

a > 1, b > 1

f4 0.676 0.691
f5 0.684 0.697
f6 0.701 0.700
f7 0.692 0.700

Table 1. Retrieval performance with varying weighting functions in ordering the query
words. See text for details. Total number of visual words selected: 3× 104.

(b = 1). In this way, the weight a (a > 1) gives more priority to the query words
than those not in the query (a = 1). Table 1 assesses these effects as follows: i)
(f1): a = 1, random selection of visual words (dimensions). ii) (f2): a = 10, query
words 10× more likely to be selected. iii) (f3): a = tf , similar to f2 but weight
a is proportional to the term frequency of the query word, rather than constant
as in f2. As reported in Table 1, the retrieval results of f1 are as good as spatial
verification on the Oxford 5K dataset, while achieving slightly higher accuracy
on the Paris 6K dataset. Note that f1 can be completed offline, so our random
selection method is able to re-rank the dataset effectively and efficiently but
with less information required than the standard spatial verification method.
In contrast, the mapping functions f2 and f3 are query-specific, namely the
dimensions are decided according to the given query online. They result in more
accurate retrieval accuracy than the offline version (f1), as well as outperform
the spatial verification results on both datasets. The difference between f2 and
f3 is negligible when a is large. As a result, we set weight a = 10 whenever query
words require priority in random space partition.

2) Number of randomly chosen dimensions D. Fig. 3 (a) reports the
retrieval accuracy for increasing D dimensions selected. Note that the context
generation utilises these dimensions to collect contextual information during re-
ranking. As illustrated in Fig. 3 (a), the accuracy improves as D increases, and
then plateaus above a threshold, e.g. D = 7 × 104 on both Oxford 5K and
Paris 6K datasets. Fig. 3 (a) also validates that the re-ranking performance
improves by diminishing amounts as D increases. In addition, Table 2 shows the
average CPU time as D increases, in which the CPU time rises consistently with
increasing dimension number D. Considering both accuracy and runtime, we set
D = 3× 104.

5.3 Effects of context expansion

In this section we illustrate the effects of context expansion in improving the
re-ranking performance in two aspects:
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Fig. 3. (a): Retrieval result comparison with increasing dimension D. (b): Retrieval
result comparison with increasing top/bottom-H.

Methods Oxford 5K Paris 6K Oxford 105K

Spatial Re-ranking 2.10 4.71 4.34

f2

D = 1× 104 0.030 0.034 0.44
D = 3× 104 0.039 0.043 0.48
D = 5× 104 0.045 0.052 0.51
D = 7× 104 0.054 0.060 0.54

Table 2. Computational cost comparison of spatial verification and our method, where
D is the selected dimension (context) number. The results are measured by CPU
second.

1) Query-relevant set (S) collection. This can be done offline [20] or
online [15], as discussed in Section 3.2. We investigate the effects of various query-
relevant set S collection methods by applying them to re-rank three retrieval
systems: the baseline system (S1), spatial verification (S2), and average query
expansion (AQE) (S3). Initially, we investigate the effects of various ways to
collect S based on re-ranking the baseline system (S1). As seen in Table 3, the
retrieval accuracy is 14.5% (9.5%) higher than S1 on the Oxford 5K (Paris 6K)
dataset, when S is formed by offline expansion. In addition, online expansion is
performed by including S as all words included in the spatially verified regions S
(as done by AQE in [15]). The difference between the retrieval results is minor,
e.g. 0.701 v.s. 0.696 on the Oxford 5K dataset. Moreover, combining offline and
online expansion leads to a small rise in mAP scores for S1. Similar to S1, offline
expansion also enables an increase in retrieval accuracy when re-ranking the
results returned by S2 and S3, while the online expansion methods lead to mAP
scores close to the offline version but with more expensive computational cost
during runtime. Therefore, we use the computationally cheaper offline expansion
in the experiments.

2) Query-relevant (S) selection weight. We investigate the effects of
query-relevant set (S) on the re-ranking results. This is done by enlarging weight
b in the random mapping function (Eq. 2) while fixing weight a = 10 in Table 1:
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Datasets
Retrieval system Context expansion method

System ID System baseline Offline [20] Online [15] Offline + Online

Oxford5K
S1 0.612 0.701 0.696 0.703
S2 0.645 0.700 0.703 0.706
S3 0.806 0.814 0.825 0.830

Paris6K
S1 0.639 0.700 0.705 0.705
S2 0.653 0.704 0.709 0.709
S3 0.769 0.770 0.777 0.773

Table 3. Illustration of the effects of various context expansion methods on the re-
ranking results. In this process,the query-relevant sets S are collected by online or offline
expansion, while the re-ranking is based on three kinds of retrieval system, namely:
S1, Baseline [1]; S2, Spatial Re-ranking [1]; S3, AQE [15]. The offline expansion is
computationally cheaper compared to the online expansion, while its performance is
close to the online versions on all the three systems.

i) f4: b = a
8 ; ii) f5: b = a

4 ; iii) f6: b = a
2 ; iv) f7: b = a. The query-relevant words

are collected by offline query expansion. Note that the parameters a > 1, b > 1
in Eq. 2 indicate that both the query and query-relevant words have priority to
be selected. We set b = a

2 by default in the following experiments as it achieves
the best performance on both datasets.

5.4 Evaluation of context re-ranking

In the previous sections, we evaluate various parameters when generating con-
texts. As expected, the context re-ranking parameters, also affect the re-ranking
results, which are discussed as follows:

1) The range of top/bottom ranks. This is set by parameter H in Eq. 5.
Fig. 3 (b) reports the retrieval accuracy with the increasing top/bottom-H. In-
tuitively, the range of top (bottom) ranks need to be relatively small compared
to the dataset size so that it indicates whether a context is close to the query.
As shown in Fig. 3 (b), we obtain stable retrieval accuracy when H exceeds a
threshold, where H = 200. Thus, we set H = 200 as default.

2) The number of re-ranking iterations. Note that the re-ranking pro-
cess is an updating scheme: the similarity score of each dataset image is refined
according to the contextual information extracted from the ranking list. This
process can be repeated such that each iteration generates re-ordered ranks,
leading to updated contextual information. Fig. 4 reports the re-ranking accu-
racy as the iteration number grows, on the Oxford 5K and Paris 6K datasets. As
seen in Fig. 4, retrieval accuracy is increased when the iteration number raises
from 0 (baseline) to 3. During this process, the highest performance gain occurs
at the first iteration. However, the accuracy begins to drop after several itera-
tions. This is because random space partition usually includes noise due to the
simplified clustering method. The noisy contextual information is accumulated
within several iterations, thus decreasing the accuracy. Based on the above, we
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Fig. 4. Illustration of the effects of re-ranking iterations on the Oxford 5K and Paris
6K datasets. The iteration number raises from 0 (baseline) to 6, gradually. Best viewed
in color.

Method
Oxford 5K Paris 6K Oxford 105K

Runtime mAP Runtime mAP Runtime mAP

Spatial verification 2.10 0.645 4.71 0.653 4.34 0.571

Our method 0.039 0.701 0.043 0.700 0.48 0.585

AQE 2.21 0.796 4.85 0.769 6.01 0.767
Table 4. Comparison of the effectiveness and efficiency of various re-ranking methods
on three datasets, measured by CPU second. Note that the runtime of AQE includes
spatial verification and re-issuing query of the dataset. We only calculate the runtime
of re-ranking, while do not include the CPU time spent on the initial baseline retrieval.

perform context based re-ranking once only in order to balance the efficiency
and effectiveness.

5.5 Comparison to state-of-the-art

This section compares the accuracy and computation cost of our method to
state-of-the-art.

1. Computational cost: As our method makes use of the inverted file
structure, it requires no extra memory usage compared to the baseline tf-idf
matching. Moreover, the runtime of our method consistently increases with D
in terms of CPU time (Table 2) and accuracy (Fig. 3 (a)). By truanting the
dimension number, our method balances effectiveness and efficiency. In addition,
Table 4 compares our method to the spatial verification and AQE methods in
terms of both accuracy and runtime. As seen in Table 4, our method outperforms
the spatial verification method, while it is not as accurate as AQE. However, as
AQE requires re-issuing the query from spatial verified results, our method is
able to reduce the computational cost while still increasing the accuracy over
the baseline and spatial verification methods.

2. Accuracy: Table 5 compares the accuracy of our method to state-of-the-
art in three groups. Group A compares our method to some widely used spatial
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Method Oxford 5K Paris 6K Oxford 105K

Group A

Baseline 0.612 0.639 0.515
WGC [4] (no prior) 0.621 0.644 0.574

Spatial Re-ranking [1] 0.645 0.653 0.571
Our method 0.701 0.700 0.585

iSP [16] 0.741 [16] 0.769 [16] 0.649 [16]

Group B

QE baseline [15] 0.708 0.736 0.679
AQE [15] 0.796 0.769 0.767
DQE [11] 0.798 0.783 0.802

Hello neighbor [13] 0.814 [13] 0.803 [13] 0.767 [13]

Group C
Our method + AQE [15] 0.814 0.770 0.757
Our method + DQE [11] 0.832 0.793 0.790

Table 5. Retrieval performance comparison with state-of-the-art. Our method in this
table is based on tf-idf similarity (S1). The results are all obtained from our implemen-
tation except those are taken from literatures. Note that our results are slightly different
from the results reported in the original paper due to the repetition in implementation

re-ranking methods. Our method is ranked in the second place, although it is
based on simply contextual re-ranking. As seen from Table 2 and Table 5, our
method outperforms the standard spatial verification and is about 5 times faster.
This is because our method uses less information to re-rank, e.g. it does not re-
quire the spatial consistency test applied to the features. Moreover, our method
also outperforms the weak geometric consistency (WGC) method, which aims
to verify the consistency between matching features without estimation of a full
transformation [4]. Group B compares our method to various query expansion
methods, such as AQE and DQE. As shown in Table 5, the accuracy of our
method is below these query expansion methods. This is because we are aiming
at efficient refinement of initial retrieval results without re-issuing the query as
done by these query expansion methods. Compared to the query expansion meth-
ods, our method does not need online collection of query relevant visual words.
The final group investigates the effect when our context re-ranking method is
combined with other re-ranking methods, for example AQE and DQE. The re-
sults illustrate that our method can be combined with various query expansion
methods, which leads to further improvement of retrieval performance.

6 Conclusion

In this paper, we proposed a simple yet effective re-ranking method for improving
the BoW based object retrieval system. In contrast to the standard re-ranking
methods, our method analyses the image ranks in terms of shared contextual
information rather than expensive spatial consistency examination. We exploit
contextual information in two steps. Firstly, we use a random space partition
method to cluster the dataset into a large number of image groups. Secondly,
the image groups, namely contexts, are used to refine the similarity scores of
dataset images by considering their context factors. The experimental results
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show that our method can provide a significant accuracy boost with minimal
computational cost. In future, we plan to test our method on non-rigid object
retrieval, since unlike other re-ranking methods we do not rely on spatial rigidity.

References

1. Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Object retrieval with
large vocabularies and fast spatial matching. In: Proc. IEEE Conf. Comp. Vis.
Patt. Recogn. (2007) 1–8

2. Sivic, J., Zisserman, A.: Video Google: A text retrieval approach to object matching
in videos. In: Proc. Int. Conf. Comp. Vis. (2003) 1470–1477

3. Nister, D., Stewenius, H.: Scalable recognition with a vocabulary tree. In: Proc.
IEEE Conf. Comp. Vis. Patt. Recogn. (2006) 2161–2168

4. Jégou, H., Douze, M., Schmid, C.: Hamming embedding and weak geometric
consistency for large scale image search. In: Proc. Eur. Conf. Comp. Vis. (2008)
304–317

5. Jégou, H., Douze, M., Schmid, C.: Improving bag-of-features for large scale image
search. Int. J. Comp. Vis. 87 (2010) 316–336

6. Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffal-
itzky, F., Kadir, T., Van Gool, L.: A comparison of affine region detectors. Int. J.
Comp. Vis. 65 (2005) 43–72

7. Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Lost in quantization:
Improving particular object retrieval in large scale image databases. In: Proc.
IEEE Conf. Comp. Vis. Patt. Recogn. (2008)

8. Mikulık, A., Perdoch, M., Chum, O., Matas, J.: Learning a Fine Vocabulary. In:
Proc. Eur. Conf. Comp. Vis. (2010) 1–14

9. Jegou, H., Harzallah, H., Schmid, C.: A contextual dissimilarity measure for ac-
curate and efficient image search. In: Proc. IEEE Conf. Comp. Vis. Patt. Recogn.
(2007) 1–8

10. Turcot, P., Lowe, D.: Better matching with fewer features: The selection of useful
features in large database recognition problems. In: ICCV Workshop on Emergent
Issues in Large Amounts of Visual Data. (2009) 2109–2116
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